Adapting SAPRC Model Chemistry Mechanism to Low Temperature Conditions for Simulating Winter Ozone in Uintah Basin

PI: Marc Mansfield¹

Huy Tran¹, Trang Tran¹, Sambhav Kumbhani², Jaron Hansen²

¹Utah State University, Bingham Research Center

²Brigham Young University, Department of Chemistry and Biochemistry

ACKNOWLEDGMENTS

Utah Department of Environmental Quality
Utah Energy Research Triangle
Bureau of Land Management – Utah Office

Introduction -- Why Models Are Important

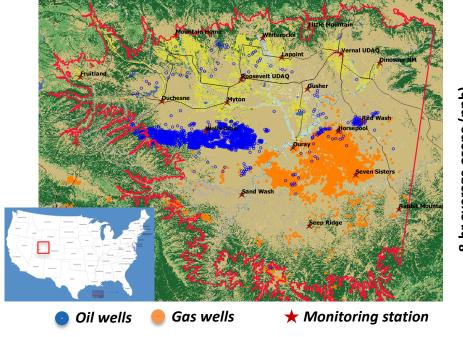
 Measurements are expensive (labor + equipment). We can use models to fill in the gaps.

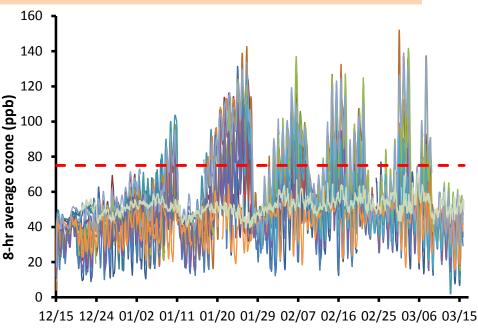
Models are used to inform regulatory decisions.

Introduction -- Models have three important components.

- Meteorology (wind patterns, temperature, humidity, ...)
- Emissions Inventory (when, where, and how much of each pollutant entering the atmosphere)
- <u>Chemistry</u> (the "chemistry mechanism" = a mathematical modeling package of all possible reactions between all trace gases, as powered by ultraviolet radiation)

Introduction


- Statement of Problem: Is the SAPRC07 Chemical Mechanism adequate for low-temperature, low-humidity work?
- Methodology: Identify missing or poorly represented reactions, then up-date the codes.
- Result: The updated models produce a net decrease in predicted ozone concentration.


Introduction

- Ozone pollution in the Uintah Basin, UT commonly occurs in wintertime when temperatures range between 260-270 K. Model chemical mechanisms were typically developed for studying ozone pollution in urban areas during summertime at a reference temperature of 300 K.
- Many chemical reactions that are negligible under summertime conditions become important for ozone formation under wintertime conditions.
- New measurements on chemical reactions became available but not all of them had been updated into the chemical mechanisms for photochemical models.

The chemical mechanisms need to be updated and adapted to low temperature conditions for better winter ozone photochemical model performance.

Methodologies

- Most intuitive way: smog chamber experiments under Uintah basin winter conditions. (Beyond the scope of this study)
- > Literature review to capture most up-to-date results
 - NASA Jet Propulsion Laboratory: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Latest update: Evaluation 17 (2011)
 - IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. Latest date July 2014.
 - Other published peer-reviewed journal articles

Mechanism of interest:

Statewide Air Pollution Research Center 2007 (SAPRC07)

Improvements made to SAPRC07 mechanism

Photolysis reactions: NO₂, O¹D, O³P, HCHO, HNO₃ (out of total 39 reactions)

Example of O¹D quantum yield as function of wavelength and temperature

$$\begin{split} &\Phi(\lambda,T) = \left\{\frac{q_1}{q_1+q_2}\right\} \times A_1 \times \exp\left\{-\left(\frac{X_1-\lambda}{\omega_1}\right)^4\right\} + \left\{\frac{q_2}{q_1+q_2}\right\} \times A_2 \times \left\{\frac{T}{300}\right\}^2 \exp\left\{-\left(\frac{X_2-\lambda}{\omega_2}\right)^2\right\} \\ &+ A_3 \times \left\{\frac{T}{300}\right\}^{1.5} \exp\left\{-\left(\frac{X_3-\lambda}{\omega_3}\right)^2\right\} + c \end{split}$$

Non-photolysis reactions: updated 40 reactions, including 11 new reactions describing HNO_3 branching effect, CH_4 chemistry, and new reactions taken from the newer SAPRC11 mechanism.

New chemical species: HCOCO3, PHEN, XYNL, CATL (introduced in SAPRC11)

SAPRC07 Improvements: HNO₃ branching effect

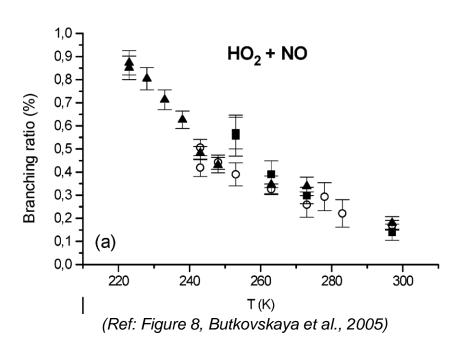
$$HO_2 + NO \rightarrow OH + NO_2$$

$$k(298 \text{ K}) = 8.8 \times 10^{-12}$$

$$HO_2 + NO + H_2O \rightarrow HNO_3 + H_2O$$

$$k(298 \text{ K}) = 1.6 \times 10^{-14}$$

Reaction (2) plays as termination of HO₂ and NO and by that leads to decrease in O₃ formation.


At 298 K, reaction (2) is only ~ 0.2% as fast as reaction (1); reaction (2) is not considered in up-to-date chemical mechanisms.

Formation of HNO₃ increases under low temperature condition

Branching ratio (2)/(1) increase by 5-folds as temperature decrease from 298 K to 223 K ¹

HNO₃ branching effect was added into SAPRC07 mechanism for winter O₃ study.

¹Butkovskaya, N. I.; Kukui, A.; Pouvesle, N.; Le Bras, G., **Formation of Nitric Acid in the Gas-Phase HO₂ + NO Reaction: Effects of Temperature and Water Vapor**. The Journal of Physical Chemistry A **2005**, 109 (29), 6509-6520.

SAPRC07 Improvements: Methane chemistry

*Major O*¹*D reaction pathway:*

$$H_2O + O^1D = 2*OH$$

(3)
$$k = 2.14 \times 10^{-10}$$

 O^1D also reacts with CH_4 :

$$CH_4 + O^1D = OH + CH_3$$

(4)
$$k = 1.05 \times 10^{-10}$$

$$CH_4 + O^1D = HCHO + H_2$$

(5)
$$k = 7.5 \times 10^{-12}$$

$$CH_4 + O^1D = CH_2OH + H$$

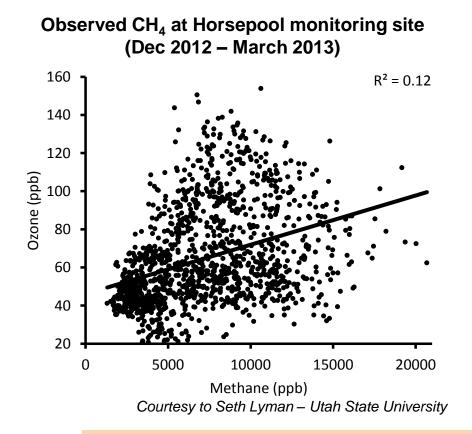
(6)
$$k = 3.45 \times 10^{-11}$$

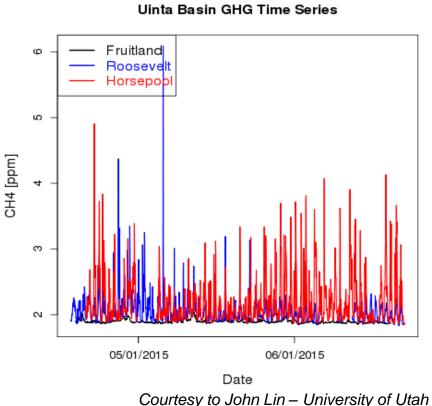
$$CH_2OH + O_2 = HCHO + HO_2$$

(7)
$$k(T) = 5.3 \times 10^{-12} \exp(170/T)$$

- Reactions (4) through (7) form radicals and formaldehyde (HCHO) that have high O₃ reactivity
- Reactions (4) through (7) are not considered in up-to-date chemical mechanisms because of the abundance of water vapor over CH₄

$$[H_2O] \sim 10^4 \text{ ppm}$$
 vs. $[CH_4] \sim 2 \text{ ppm}$

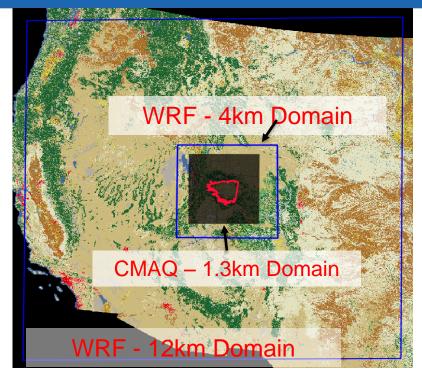

Currently CH₄ is treated with constant concentration of 1.85 ppm in SAPRC07.



SAPRC07 Improvements: Methane chemistry (cont.)

For Uintah basin in winter time:

- CH₄ concentrations are higher in the Uintah basin: ~ 10 20 ppm near surface layer under inversion conditions.
- Less water vapor under dry conditions during winter: [H₂O] ~ 10³ ppm at the surface layer



Reactions with CH_4 are added to the SAPRC07 chemical mechanism. Furthermore, CH_4 concentrations are estimated instead of being kept at constant background concentration of 1.85 ppm

Model configurations

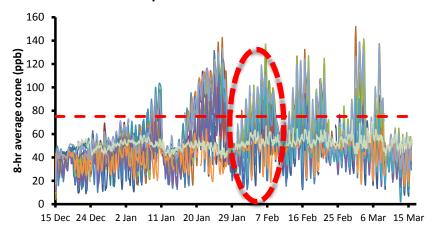
Weather Research and Forecasting (WRF) model version 3.5

Community Multiscale Air Quality (CMAQ) version 5.0.2 with modifications:

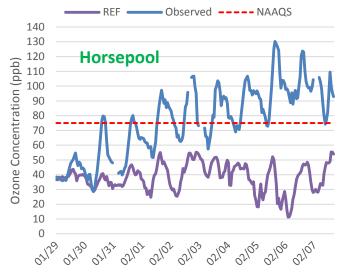
- Surface albedo
- Ozone dry deposition over snow

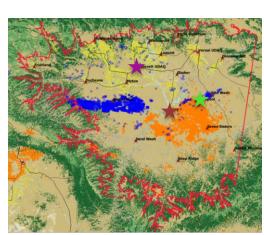
Utah BLM ARMS Emission Inventories for base year 2010, with modifications.

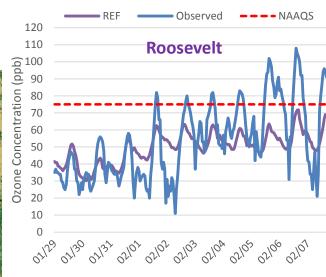
Sensitivity simulations:


REF: non-updated SAPRC07

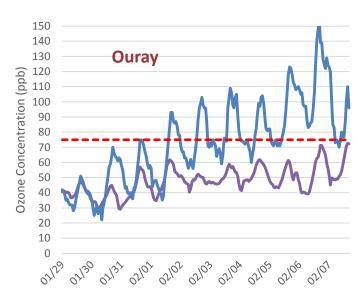
NITRIC: SAPRC07 updated with HNO₃ branching

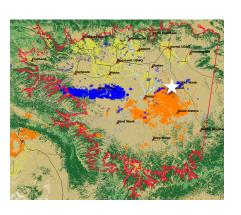

METHN: SAPRC07 updated with CH₄ chemistry

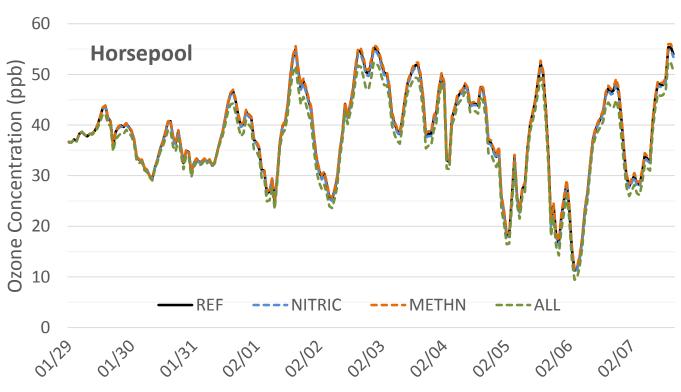

ALL: SAPRC07 with all updates


Simulation episode: 01/29 – 02/07 2013

Model performance: Ozone concentrations are underestimated

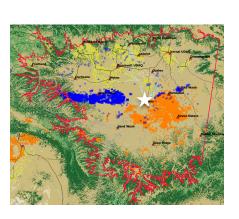


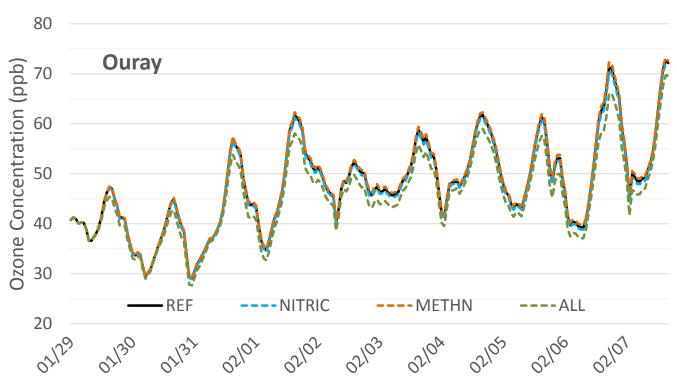




Reasons:

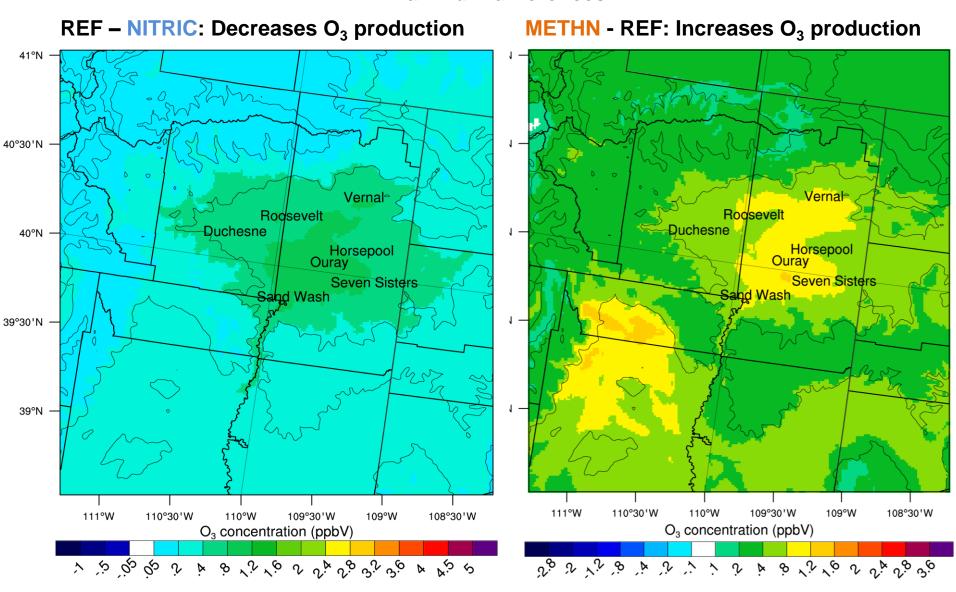
- Incomplete emission inventory (VOC is too low?)
- Lack of representative VOC speciation profiles for oil & gas
- WRF model has difficulties in simulation cold air pool (too deep mixing layer)
- Discrepancies in chemical mechanism



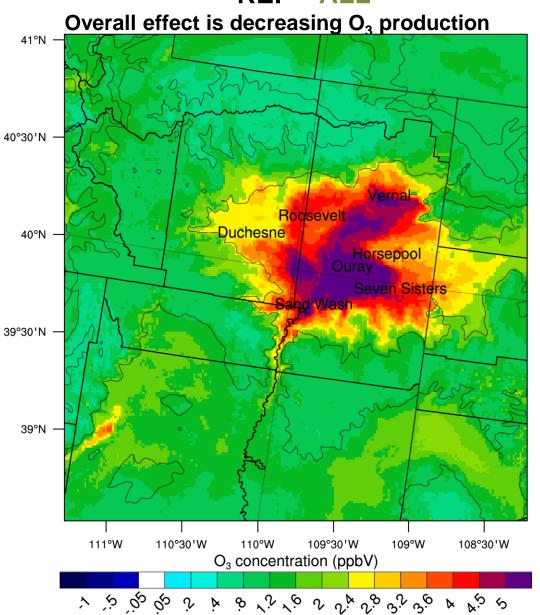


O_3 comparison: 01/29 – 02/07 2013 (ppb)

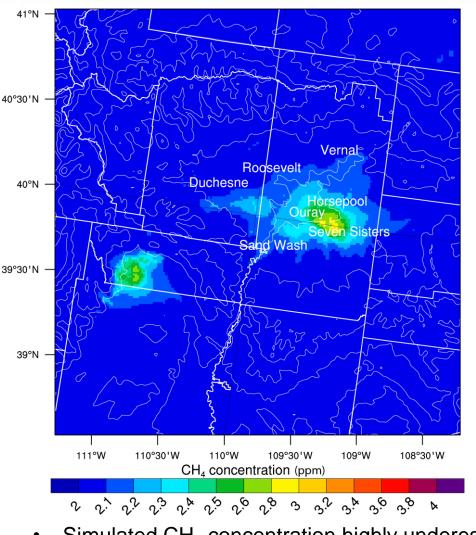
	REF	NITRIC	METHN	ALL
Overall average	38.4	38.0	38.7	36.7
Highest concentrations	55.4	54.8	56.0	52.4
Highest 8hour-average	53.2	52.6	53.7	50.1
Maximum difference (-REF)		-0.6	0.8	-3.6

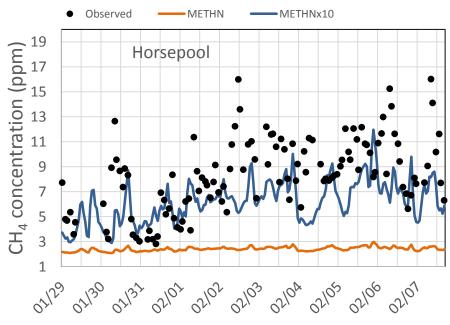


O_3 comparison: 01/29 – 02/07 2013 (ppb)

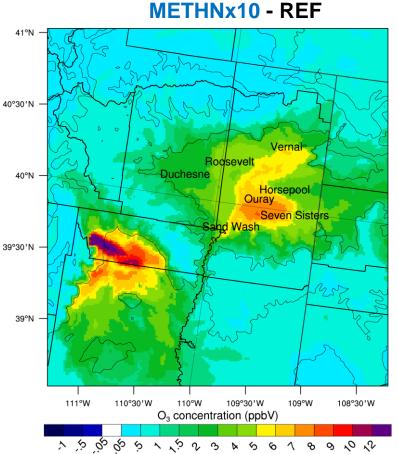

	REF	NITRIC	METHN	ALL
Overall average	47.5	47.2	47.9	45.4
Highest concentrations	72.6	71.9	73.2	69.6
Highest 8hour-average	67.1	66.2	68.0	62.3
Maximum difference (-REF)		-0.96	1.1	-5.4

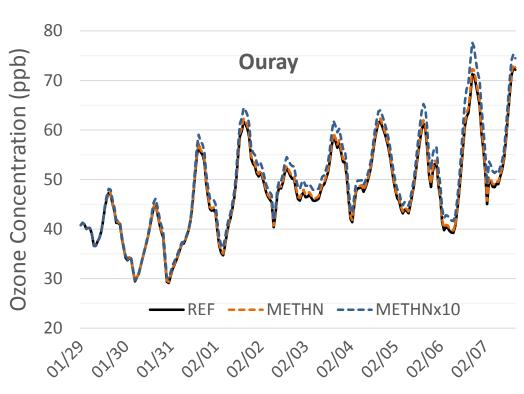
Maximum differences





Updated-SAPRC07 evaluation: CH₄ performance


CH₄ concentrations at Horsepool



- Simulated CH₄ concentration highly underestimated observed values
- Arbitrary increase of CH₄ emission by 10 times resulted in simulated CH₄ concentrations closer but still underestimated observed CH₄

Updated-SAPRC07: Arbitrary increase of CH₄ emission by 10 times significantly increased O₃ concentrations

O_3 comparison: 01/29 – 02/07 2013 (ppb)

	REF	METHN	METHNx10
Overall average	47.5	47.9	49.9
Highest concentrations	72.6	73.2	77.7
Highest 8hour-average	67.1	68.0	72.7
Maximum difference (-REF)		1.1	6.9

Summary

- The SAPRC07 chemical mechanism has been improved for simulating winter ozone episodes in Uintah basin.
- Impact of introduction of HNO₃ branching effect is marginal: O₃ production decreased by up to 1 ppb.
- CH₄ chemistry is important for O₃ production in Uintah basin during wintertime: O₃ production increased by up to 1.6 ppb with "as is" CH₄. Increase of CH₄ emission significantly increases O₃ production.
- Combination of all modifications to SAPRC07 resulted in decrease of O₃ production. This effect likely will change with improved emission inventory.
- Improvement of emission inventory is a critical need. This improvement should include developments of VOC speciation profiles that represent well the oil and gas emissions.

